[ty] Correctly instantiate generic class that inherits `__init__` from generic base class (#19693)
This is subtle, and the root cause became more apparent with #19604,
since we now have many more cases of superclasses and subclasses using
different typevars. The issue is easiest to see in the following:
```py
class C[T]:
def __init__(self, t: T) -> None: ...
class D[U](C[T]):
pass
reveal_type(C(1)) # revealed: C[int]
reveal_type(D(1)) # should be: D[int]
```
When instantiating a generic class, the `__init__` method inherits the
generic context of that class. This lets our call binding machinery
infer a specialization for that context.
Prior to this PR, the instantiation of `C` worked just fine. Its
`__init__` method would inherit the `[T]` generic context, and we would
infer `{T = int}` as the specialization based on the argument
parameters.
It didn't work for `D`. The issue is that the `__init__` method was
inheriting the generic context of the class where `__init__` was defined
(here, `C` and `[T]`). At the call site, we would then infer `{T = int}`
as the specialization — but that wouldn't help us specialize `D[U]`,
since `D` does not have `T` in its generic context!
Instead, the `__init__` method should inherit the generic context of the
class that we are performing the lookup on (here, `D` and `[U]`). That
lets us correctly infer `{U = int}` as the specialization, which we can
successfully apply to `D[U]`.
(Note that `__init__` refers to `C`'s typevars in its signature, but
that's okay; our member lookup logic already applies the `T = U`
specialization when returning a member of `C` while performing a lookup
on `D`, transforming its signature from `(Self, T) -> None` to `(Self,
U) -> None`.)
Closes https://github.com/astral-sh/ty/issues/588