Add EfficientLoFTR model (#36355)
* initial commit
* Apply suggestions from code review
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* fix: various typos, typehints, refactors from suggestions
* fix: fine_matching method
* Added EfficientLoFTRModel and AutoModelForKeypointMatching class
* fix: got rid of compilation breaking instructions
* docs: added todo for plot
* fix: used correct hub repo
* docs: added comments
* fix: run modular
* doc: added PyTorch badge
* fix: model repo typo in config
* fix: make modular
* fix: removed mask values from outputs
* feat: added plot_keypoint_matching to EfficientLoFTRImageProcessor
* feat: added SuperGlueForKeypointMatching to AutoModelForKeypointMatching list
* fix: reformat
* refactor: renamed aggregation_sizes config parameter into q, kv aggregation kernel size and stride
* doc: added q, kv aggregation kernel size and stride doc to config
* refactor: converted efficientloftr implementation from modular to copied from mechanism
* tests: overwrote batching_equivalence for "keypoints" specific tests
* fix: changed EfficientLoFTRConfig import in test_modeling_rope_utils
* fix: make fix-copies
* fix: make style
* fix: update rope function to make meta tests pass
* fix: rename plot_keypoint_matching to visualize_output for clarity
* refactor: optimize image pair processing by removing redundant target size calculations
* feat: add EfficientLoFTRImageProcessor to image processor mapping
* refactor: removed logger and updated attention forward
* refactor: added auto_docstring and can_return_tuple decorators
* refactor: update type imports
* refactor: update type hints from List/Dict to list/dict for consistency
* refactor: update MODEL_MAPPING_NAMES and __all__ to include LightGlue and AutoModelForKeypointMatching
* fix: change type hint for size parameter in EfficientLoFTRImageProcessor to Optional[dict]
* fix typing
* fix some typing issues
* nit
* a few more typehint fixes
* Remove output_attentions and output_hidden_states from modeling code
* else -> elif to support efficientloftr
* nit
* tests: added EfficientLoFTR image processor tests
* refactor: reorder functions
* chore: update copyright year in EfficientLoFTR test file
* Use default rope
* Add docs
* Update visualization method
* fix doc order
* remove 2d rope test
* Update src/transformers/models/efficientloftr/modeling_efficientloftr.py
* fix docs
* Update src/transformers/models/efficientloftr/image_processing_efficientloftr.py
* update gradient
* refactor: removed unused codepath
* Add motivation to keep postprocessing in modeling code
* refactor: removed unnecessary variable declarations
* docs: use load_image from image_utils
* refactor: moved stage in and out channels computation to configuration
* refactor: set an intermediate_size parameter to be more explicit
* refactor: removed all mentions of attention masks as they are not used
* refactor: moved position_embeddings to be computed once in the model instead of every layer
* refactor: removed unnecessary hidden expansion parameter from config
* refactor: removed completely hidden expansions
* refactor: removed position embeddings slice function
* tests: fixed broken tests because of previous commit
* fix is_grayscale typehint
* not refactoring
* not renaming
* move h/w to embeddings class
* Precompute embeddings in init
* fix: replaced cuda device in convert script to accelerate device
* fix: replaced stevenbucaille repo to zju-community
* Remove accelerator.device from conversion script
* refactor: moved parameter computation in configuration instead of figuring it out when instantiating a Module
* fix: removed unused attributes in configuration
* fix: missing self
* fix: refactoring and tests
* fix: make style
---------
Co-authored-by: steven <steven.bucaille@buawei.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>