core[minor]: Add BaseModel.rate_limiter, RateLimiter abstraction and in-memory implementation (#24669)
This PR proposes to create a rate limiter in the chat model directly,
and would replace: https://github.com/langchain-ai/langchain/pull/21992
It resolves most of the constraints that the Runnable rate limiter
introduced:
1. It's not annoying to apply the rate limiter to existing code; i.e.,
possible to roll out the change at the location where the model is
instantiated,
rather than at every location where the model is used! (Which is
necessary
if the model is used in different ways in a given application.)
2. batch rate limiting is enforced properly
3. the rate limiter works correctly with streaming
4. the rate limiter is aware of the cache
5. The rate limiter can take into account information about the inputs
into the
model (we can add optional inputs to it down-the road together with
outputs!)
The only downside is that information will not be properly reflected in
tracing
as we don't have any metadata evens about a rate limiter. So the total
time
spent on a model invocation will be:
* time spent waiting for the rate limiter
* time spend on the actual model request
## Example
```python
from langchain_core.rate_limiters import InMemoryRateLimiter
from langchain_groq import ChatGroq
groq = ChatGroq(rate_limiter=InMemoryRateLimiter(check_every_n_seconds=1))
groq.invoke('hello')
```