feat: dynamic tool registration via middleware (#34842)
dependent upon https://github.com/langchain-ai/langgraph/pull/6711
1. relax constraint in `factory.py` to allow for tools not
pre-registered in the `ModelRequest.tools` list
2. always add tool node if `wrap_tool_call` or `awrap_tool_call` is
implemented
3. add tests confirming you can register new tools at runtime in
`wrap_model_call` and execute them via `wrap_tool_call`
allows for the following pattern
```py
from langchain_core.messages import HumanMessage, ToolMessage
from langchain_core.tools import tool
from libs.langchain_v1.langchain.agents.factory import create_agent
from libs.langchain_v1.langchain.agents.middleware.types import (
AgentMiddleware,
ModelRequest,
ToolCallRequest,
)
@tool
def get_weather(location: str) -> str:
"""Get the current weather for a location."""
return f"The weather in {location} is sunny and 72°F."
@tool
def calculate_tip(bill_amount: float, tip_percentage: float = 20.0) -> str:
"""Calculate the tip amount for a bill."""
tip = bill_amount * (tip_percentage / 100)
return f"Tip: ${tip:.2f}, Total: ${bill_amount + tip:.2f}"
class DynamicToolMiddleware(AgentMiddleware):
"""Middleware that adds and handles a dynamic tool."""
def wrap_model_call(self, request: ModelRequest, handler):
updated = request.override(tools=[*request.tools, calculate_tip])
return handler(updated)
def wrap_tool_call(self, request: ToolCallRequest, handler):
if request.tool_call["name"] == "calculate_tip":
return handler(request.override(tool=calculate_tip))
return handler(request)
agent = create_agent(model="openai:gpt-4o-mini", tools=[get_weather], middleware=[DynamicToolMiddleware()])
result = agent.invoke({
"messages": [HumanMessage("What's the weather in NYC? Also calculate a 20% tip on a $85 bill")]
})
for msg in result["messages"]:
msg.pretty_print()
```