feat(algebra/algebraic_card): prove `algebraic.cardinal_mk_lift_of_infinite` (#17742)
* Add `cardinal.mul_le_max_of_aleph_0_le_right` and
`cardinal.lift_mk_le_lift_mk_mul_of_lift_mk_preimage_le`.
* Add `algebraic.infinite_of_char_zero`.
* Golf `algebraic.cardinal_mk_lift_le_mul` by moving some lemmas to `cardinal.*`.
* Upgrade `algebraic.cardinal_mk_lift_le_of_infinite` to
`algebraic.cardinal_mk_lift_of_infinite`.
* Upgrade `algebraic.cardinal_mk_le_of_infinite` to
`algebraic.cardinal_mk_of_infinite`.
* Rename `algebraic.countable_of_encodable` to `algebraic.countable`,
assume `[countable R]` instead of `[encodable R]`.
* Rename `algebraic.cardinal_mk_of_encodable_of_char_zero` to
`algebraic.cardinal_mk_of_countble_of_char_zero`.