feat(analysis/convex/cone): add `inner_dual_cone_of_inner_dual_cone_eq_self` for nonempty, closed, convex cones (#15637)
We add the following results about convex cones:
- instance `has_zero`
- `inner_dual_cone_zero`
- `inner_dual_cone_univ`
- `pointed_of_nonempty_of_is_closed`
- `hyperplane_separation_of_nonempty_of_is_closed_of_nmem`
- `inner_dual_cone_of_inner_dual_cone_eq_self`
References:
- https://ti.inf.ethz.ch/ew/lehre/ApproxSDP09/notes/conelp.pdf
- Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press.
ISBN 978-0-521-83378-3. available at https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf