feat(data/real/{e,}nnreal): add some order isomorphisms (#14900)
* If `a` is a nonnegative real number, then
- `set.Icc (0 : ℝ) (a : ℝ)` is order isomorphic to `set.Iic a`;
- `set.Iic (a : ℝ≥0∞)` is order isomorphic to `set.Iic a`;
* Also, `ℝ≥0∞` is order isomorphic both to `Iic (1 : ℝ≥0∞)` and to the unit interval in `ℝ`.
* Use the latter fact to golf `ennreal.second_countable_topology`.
* Golf `ennreal.has_continuous_inv` using `order_iso.continuous`.
* Improve definitional equalities for `equiv.subtype_subtype_equiv_subtype_exists`, `equiv.subtype_subtype_equiv_subtype_inter`, `equiv.subtype_subtype_equiv_subtype`, `equiv.set.sep`, use `simps`.