feat(analysis/convex/combination): Convex hull of a `set.prod` and `set.pi` (#10125)
This proves
* `(∀ i, convex 𝕜 (t i)) → convex 𝕜 (s.pi t)`
* `convex_hull 𝕜 (s.prod t) = (convex_hull 𝕜 s).prod (convex_hull 𝕜 t)`
* `convex_hull 𝕜 (s.pi t) = s.pi (convex_hull 𝕜 ∘ t)`