mathlib
ea4dce03 - feat(category_theory): the additive envelope, Mat_ C (#6845)

Commit
4 years ago
feat(category_theory): the additive envelope, Mat_ C (#6845) # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive categoriy whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
Author
Parents
Loading