mathlib3
0da2d1d9 - feat(ring_theory/polynomial/eisenstein): add mem_adjoin_of_smul_prime_pow_smul_of_minpoly_is_eiseinstein_at (#12371)

Commit
3 years ago
feat(ring_theory/polynomial/eisenstein): add mem_adjoin_of_smul_prime_pow_smul_of_minpoly_is_eiseinstein_at (#12371) We add `mem_adjoin_of_smul_prime_pow_smul_of_minpoly_is_eiseinstein_at`: let `K` be the field of fraction of an integrally closed domain `R` and let `L` be a separable extension of `K`, generated by an integral power basis `B` such that the minimal polynomial of `B.gen` is Eisenstein at `p`. Given `z : L` integral over `R`, if `p ^ n • z ∈ adjoin R {B.gen}`, then `z ∈ adjoin R {B.gen}`. Together with `algebra.discr_mul_is_integral_mem_adjoin` this result often allows to compute the ring of integers of `L`. From flt-regular
Parents
Loading