mathlib3
f4758115 - chore(*): add mathlib4 synchronization comments (#18546)

Commit
2 years ago
chore(*): add mathlib4 synchronization comments (#18546) Regenerated from the [port status wiki page](https://github.com/leanprover-community/mathlib/wiki/mathlib4-port-status). Relates to the following files: * `algebra.algebra.operations` * `algebra.algebra.restrict_scalars` * `algebra.lie.non_unital_non_assoc_algebra` * `algebra.order.algebra` * `algebra.star.module` * `algebra.star.star_alg_hom` * `category_theory.adjunction.evaluation` * `category_theory.adjunction.limits` * `category_theory.category.pairwise` * `category_theory.concrete_category.basic` * `category_theory.limits.constructions.binary_products` * `category_theory.limits.constructions.epi_mono` * `category_theory.limits.constructions.pullbacks` * `category_theory.limits.creates` * `category_theory.limits.exact_functor` * `category_theory.limits.full_subcategory` * `category_theory.limits.functor_category` * `category_theory.limits.preserves.finite` * `category_theory.limits.preserves.shapes.binary_products` * `category_theory.limits.preserves.shapes.equalizers` * `category_theory.limits.preserves.shapes.products` * `category_theory.limits.preserves.shapes.pullbacks` * `category_theory.limits.preserves.shapes.terminal` * `category_theory.limits.shapes.binary_products` * `category_theory.limits.shapes.disjoint_coproduct` * `category_theory.limits.shapes.equalizers` * `category_theory.limits.shapes.equivalence` * `category_theory.limits.shapes.finite_limits` * `category_theory.limits.shapes.images` * `category_theory.limits.shapes.products` * `category_theory.limits.shapes.pullbacks` * `category_theory.limits.shapes.regular_mono` * `category_theory.limits.shapes.split_coequalizer` * `category_theory.limits.shapes.strict_initial` * `category_theory.limits.shapes.terminal` * `category_theory.limits.shapes.zero_objects` * `category_theory.limits.unit` * `category_theory.limits.yoneda` * `category_theory.over` * `category_theory.path_category` * `category_theory.quotient` * `category_theory.sites.sieves` * `category_theory.structured_arrow` * `combinatorics.simple_graph.hasse` * `combinatorics.simple_graph.metric` * `combinatorics.simple_graph.prod` * `combinatorics.simple_graph.regularity.energy` * `combinatorics.simple_graph.trails` * `control.lawful_fix` * `group_theory.solvable` * `linear_algebra.affine_space.affine_map` * `linear_algebra.dfinsupp` * `topology.algebra.field` * `topology.algebra.group_completion` * `topology.algebra.infinite_sum.basic` * `topology.algebra.infinite_sum.order` * `topology.algebra.infinite_sum.real` * `topology.algebra.infinite_sum.ring` * `topology.algebra.order.field` * `topology.algebra.order.upper_lower` * `topology.algebra.ring.basic` * `topology.algebra.uniform_mul_action` * `topology.instances.int` * `topology.instances.nat` * `topology.instances.nnreal` * `topology.instances.rat` * `topology.instances.real` * `topology.locally_constant.algebra` * `topology.metric_space.algebra` * `topology.metric_space.antilipschitz` * `topology.metric_space.basic` * `topology.metric_space.emetric_paracompact` * `topology.metric_space.emetric_space` * `topology.metric_space.equicontinuity` * `topology.metric_space.infsep` * `topology.metric_space.lipschitz` * `topology.metric_space.metric_separated` * `topology.metric_space.shrinking_lemma` * `topology.sequences`
Parents
Loading