llvm-project
44861c7a - [mlir] [linalg] Check for dim shape to decide unit dim for each operand in dropUnitDims pass. (#93317)

Commit
1 year ago
[mlir] [linalg] Check for dim shape to decide unit dim for each operand in dropUnitDims pass. (#93317) `mlir-opt --linalg-fold-unit-extent-dims` pass on the following IR ``` #map = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1 + d4, d2 + d5, d6)> #map1 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5, d6, d3)> #map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3)> module { func.func @main(%arg0: tensor<1x?x?x1xf32>, %arg1: index) -> tensor<?x1x61x1xf32> { %cst = arith.constant dense<1.000000e+00> : tensor<1x1x1x1xf32> %0 = tensor.empty(%arg1) : tensor<?x1x61x1xf32> %1 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"]} ins(%arg0, %cst : tensor<1x?x?x1xf32>, tensor<1x1x1x1xf32>) outs(%0 : tensor<?x1x61x1xf32>) { ^bb0(%in: f32, %in_0: f32, %out: f32): %2 = arith.mulf %in, %in_0 : f32 %3 = arith.addf %out, %2 : f32 linalg.yield %3 : f32 } -> tensor<?x1x61x1xf32> return %1 : tensor<?x1x61x1xf32> } } ``` produces an incorrect tensor.expand_shape operation: ``` error: 'tensor.expand_shape' op expected dimension 0 of collapsed type to be dynamic since one or more of the corresponding dimensions in the expanded type is dynamic %1 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"]} ins(%arg0, %cst : tensor<1x?x?x1xf32>, tensor<1x1x1x1xf32>) outs(%0 : tensor<?x1x61x1xf32>) { ^ /mathworks/devel/sandbox/sayans/geckWorks/g3294570/repro.mlir:8:10: note: see current operation: %5 = "tensor.expand_shape"(%4) <{reassociation = [[0, 1, 2, 3]]}> : (tensor<61xf32>) -> tensor<?x1x61x1xf32> // -----// IR Dump After LinalgFoldUnitExtentDimsPass Failed (linalg-fold-unit-extent-dims) //----- // #map = affine_map<(d0) -> (0, d0)> #map1 = affine_map<(d0) -> ()> #map2 = affine_map<(d0) -> (d0)> "builtin.module"() ({ "func.func"() <{function_type = (tensor<1x?x?x1xf32>, index) -> tensor<?x1x61x1xf32>, sym_name = "main"}> ({ ^bb0(%arg0: tensor<1x?x?x1xf32>, %arg1: index): %0 = "arith.constant"() <{value = dense<1.000000e+00> : tensor<f32>}> : () -> tensor<f32> %1 = "tensor.collapse_shape"(%arg0) <{reassociation = [[0, 1], [2, 3]]}> : (tensor<1x?x?x1xf32>) -> tensor<?x?xf32> %2 = "tensor.empty"() : () -> tensor<61xf32> %3 = "tensor.empty"() : () -> tensor<61xf32> %4 = "linalg.generic"(%1, %0, %2, %3) <{indexing_maps = [#map, #map1, #map2, #map2], iterator_types = [#linalg.iterator_type<parallel>], operandSegmentSizes = array<i32: 3, 1>}> ({ ^bb0(%arg2: f32, %arg3: f32, %arg4: f32, %arg5: f32): %6 = "arith.mulf"(%arg2, %arg3) <{fastmath = #arith.fastmath<none>}> : (f32, f32) -> f32 %7 = "arith.addf"(%arg4, %6) <{fastmath = #arith.fastmath<none>}> : (f32, f32) -> f32 "linalg.yield"(%7) : (f32) -> () }) : (tensor<?x?xf32>, tensor<f32>, tensor<61xf32>, tensor<61xf32>) -> tensor<61xf32> %5 = "tensor.expand_shape"(%4) <{reassociation = [[0, 1, 2, 3]]}> : (tensor<61xf32>) -> tensor<?x1x61x1xf32> "func.return"(%5) : (tensor<?x1x61x1xf32>) -> () }) : () -> () }) : () -> () ``` The reason of this is because the dimension `d0` is determined to be an unit-dim that can be dropped based on the dimensions of operand `arg0` to `linalg.generic`. Later on when iterating over operand `outs` the dimension `d0` is determined to be an unit-dim even though the shape corresponding to it is `Shape::kDynamic`. For the `linalg.generic` to be valid `d0` of `outs` does need to be `1` but that isn't properly processed in the current implementation and the dimension is dropped resulting in `outs` operand to be `tensor<61xf32>` in the example. The fix is to also check that the dimension shape is actually `1` before dropping the dimension. The IR after the fix is: ``` #map = affine_map<()[s0, s1] -> (s0 * s1)> #map1 = affine_map<(d0) -> (0, d0)> #map2 = affine_map<(d0) -> ()> module { func.func @main(%arg0: tensor<1x?x?x1xf32>, %arg1: index) -> tensor<?x1x61x1xf32> { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %cst = arith.constant dense<1.000000e+00> : tensor<f32> %collapsed = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<1x?x?x1xf32> into tensor<?x?xf32> %0 = tensor.empty(%arg1) : tensor<?x61xf32> %1 = affine.apply #map()[%arg1, %c1] %2 = tensor.empty(%1) : tensor<?x61xf32> %3 = linalg.generic {indexing_maps = [#map1, #map2, #map1, #map1], iterator_types = ["parallel"]} ins(%collapsed, %cst, %0 : tensor<?x?xf32>, tensor<f32>, tensor<?x61xf32>) outs(%2 : tensor<?x61xf32>) { ^bb0(%in: f32, %in_0: f32, %in_1: f32, %out: f32): %4 = arith.mulf %in, %in_0 : f32 %5 = arith.addf %in_1, %4 : f32 linalg.yield %5 : f32 } -> tensor<?x61xf32> %expanded = tensor.expand_shape %3 [[0, 1], [2, 3]] output_shape [%c0, 1, 61, 1] : tensor<?x61xf32> into tensor<?x1x61x1xf32> return %expanded : tensor<?x1x61x1xf32> } } ```
Author
Parents
Loading