[mlir][affine] Modify assertion into a user visible diagnostic (#136474)
Fixes #122227
The loop’s induction variable (%i) is used to compute two different
indices via affine.apply.
And the Vectorization Assumption is Violated i.e, Each vectorized loop
should contribute at most one non-invariant index.
**Minimal example crashing :**
```
#map = affine_map<(d0)[s0] -> (d0 mod s0)>
#map1 = affine_map<(d0)[s0] -> (d0 floordiv s0)>
func.func @single_loop_unrolling_2D_access_pattern(%arg0: index) -> memref<2x2xf32> {
%c2 = arith.constant 2 : index
%cst = arith.constant 1.0 : f32
%alloc = memref.alloc() : memref<2x2xf32>
affine.for %i = 0 to 4 {
%row = affine.apply #map1(%i)[%c2]
%col = affine.apply #map(%i)[%c2]
affine.store %cst, %alloc[%row, %col] : memref<2x2xf32>
}
return %alloc : memref<2x2xf32>
}
```
The single loop %i contributes two indices (%row and %col) to the 2D
memref access.
The permutation map expects one index per vectorized loop dimension, but
here one loop (%i) maps to two indices (dim=0 and dim=1).
The code detects this when trying to assign the second index (dim=1) to
the same vector dimension (perm[0]).