DeepSpeed
047bcf6a - Add APIs to offload states of model, optimizer, and engine (#6011)

Comment changes are shownComment changes are hidden
Commit
255 days ago
Add APIs to offload states of model, optimizer, and engine (#6011) This PR adds the following APIs to offload model, optimizer, and engine states. ```pytyon def offload_states(self, include: Container[OffloadStateTypeEnum] = None, device: OffloadDeviceEnum = OffloadDeviceEnum.cpu, pin_memory: bool = True, non_blocking: bool = False) -> None: """Move the ZeRO optimizer buffers to the specified device. Arguments: include: Optional. The set of states to offload. If not provided, all states are offloaded. device: Optional. The device to move the ZeRO optimizer buffers to. pin_memory: Optional. Whether to pin the memory of the offloaded states. non_blocking: Optional. Whether to offload the states asynchronously. ... def offload_states_back(self, non_blocking: bool = False) -> None: ``` Here is the typical usage. ```python # Offload after forward, backward, and step model.offload_states() # Do something requiring a lot of device memory ... # Load states back to device memory model.offload_states_back() ``` You can selectively offload states to balance the offloading overhead and memory saving. ```python model.offload_states(include=set([OffloadStateTypeEnum.hp_params, OffloadStateTypeEnum.opt_states], device=OffloadDeviceEnum.cpu) ``` Performance (4.3B parameters / 4x A100) - Environment (4x A100, [benchmark script](https://gist.github.com/tohtana/05d5faba5068cf839abfc7b1e38b85e4)) - Average Device to Host transfer time: 2.45 GB/s, aggregated: 9.79 GB/s - Average Host to Device transfer: 11.05 GB/s, aggregated: 44.19 GB/s - Mem (allocated by PyTorch) - Before offload 18.2GB - After offloading 17.7MB - Time ([benchmark script](https://github.com/microsoft/DeepSpeedExamples/tree/tohtana/offload_states/training/offload_states), offloading time/loading time) python output_table.py | |pin_memory=0 non_blocking=0|pin_memory=0 non_blocking=1|pin_memory=1 non_blocking=0|pin_memory=1 non_blocking=1| |--:|---------------------------|---------------------------|---------------------------|---------------------------| | 1|4.34 / 3.42 |4.99 / 2.37 |6.5 / 2.42 |6.0 / 2.39 | | 2|9.9 / 3.28 |5.1 / 2.34 |6.21 / 2.42 |6.25 / 2.45 | | 3|9.92 / 3.19 |6.71 / 2.35 |6.33 / 2.38 |5.93 / 2.42 | | 4|9.55 / 2.82 |7.11 / 2.39 |6.9 / 2.38 |6.5 / 2.43 | | 5|4.4 / 3.35 |6.04 / 2.41 |6.26 / 2.41 |6.32 / 2.47 | | 6|4.4 / 3.57 |6.58 / 2.42 |6.88 / 2.4 |6.35 / 2.43 | | 7|9.51 / 3.12 |6.9 / 2.39 |6.9 / 2.39 |6.46 / 2.4 | | 8|4.77 / 3.64 |6.69 / 2.39 |7.39 / 2.42 |6.56 / 2.46 | | 9|9.5 / 3.07 |7.18 / 2.42 |6.67 / 2.39 |7.38 / 2.46 | TODO: - Enable offloading to a NVMe storage -> NVMe support is non-trivial. I suggest adding the support in another PR - [DONE] Discard buffer (and recreate it) instead of offloading. We don't need to restore the contiguous buffer for reduce. - [DONE] Check pin_memory improves performance or not --------- Co-authored-by: Logan Adams <114770087+loadams@users.noreply.github.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com>
Author
Parents
  • deepspeed/runtime
    • File
      engine.py
    • File
      utils.py
    • zero
      • File
        offload_config.py
      • File
        stage3.py
      • File
        utils.py
  • docs/code-docs/source
    • File
      zero3.rst
  • tests/unit/runtime/zero
    • File
      test_offload_states.py