Minimal Build for On-Device Training (#16326)
🛠️ __Changes in this pull request:__
This pull request introduces two significant changes to the project:
- Changing on device training checkpoint format: The current
implementation stores the on device training checkpoint as a sequence of
tensors in multiple files inside a checkpoint folder, which can be
inefficient in terms of storage and performance. In this PR, I have
modified the checkpoint format to utilize the flatbuffer table to save
the checkpoint to a single file, providing a more compact and efficient
representation. The changes around this are twofold:
- Add the checkpoint flatbuffer schema that will generate the necessary
checkpoint source files.
- Update the checkpoint saving and loading functionality to use the new
format.
- Adding support for onnxruntime minimal build: To support scenarios
where binary size is a constraint, I made changes to ensure that the
training build can work well with the minimal build.
🔍 __Open Issues:__
- In order to extract the optimizer type, the existing implementation
re-loaded the onnx optimizer model and parsed it. This is no longer
possible, since the model format can either be onnx or ort. One idea is
to do the same for ort format optimizer model. This needs some
investigation.
- Changes to the offline tooling to generate ort format training
artifacts.
- End-to-end training example showcasing the use of the minimal training
build.
- Add support for export model for inferencing in a minimal build.