Fix GQA Parity (#27108)
Fix [#27079](https://github.com/microsoft/onnxruntime/issues/27079) -
Qwen3 model quality regression on CUDA backend.
### Root Cause Analysis
The parity issue was caused by **buffer pointer misconfiguration** in
the GQA (Group Query Attention) QKV preprocessing pipeline. The original
implementation used multiple separate kernels for:
1. Unpacking packed QKV tensor
2. Applying RoPE (Rotary Position Embedding) to Q and K
3. Appending K/V to cache
This multi-kernel approach created opportunities for misconfiguration:
- Buffers were allocated but not properly used
- Pointers could reference memory that was not yet allocated or
initialized
- Buffer sharing logic was fragmented across different code paths
### Solution
Consolidate QKV preprocessing into a **single fused kernel**
(`UnpackRoPEAppend`) that performs all operations in one pass:
1. **Unified kernel design**: A single kernel handles unpacking, RoPE
application, and cache append operations
2. **Simplified buffer management**: The new `PrepareQKV` function
clearly manages buffer allocation and ensures proper initialization
3. **Explicit past-to-present cache copy**: When
`past_present_share_buffer` is false, explicitly copy past KV cache to
present buffer before appending new tokens
4. **Zero-initialization for non-shared buffers**: Clear present KV
buffers when not sharing with past to ensure deterministic output
### Changes Summary
| File | Changes |
|------|---------|
|
[group_query_attention_qkv.cuh](cci:7://file:///home/tlwu/onnxruntime/onnxruntime/contrib_ops/cuda/bert/group_query_attention_qkv.cuh:0:0-0:0)
| New fused `UnpackRoPEAppend` kernel with shared memory optimization
for non-interleaved RoPE |
| `group_query_attention_impl.cu` | New `PrepareQKV` helper function
that orchestrates buffer setup and kernel launch |
| `group_query_attention.cc` | Simplified operator logic by delegating
QKV prep to unified helper |
| `test_gqa.py` | Enhanced test coverage for various QKV configurations
|
### Key Improvements
- **Reduced kernel launches**: From 4-5 separate kernel calls to a
single fused kernel
- **Better memory safety**: All buffer pointers are validated in a
single location
- **Improved RoPE handling**: Uses shared memory for efficient
non-interleaved RoPE computation
- **Deterministic output**: Explicit buffer initialization ensures
consistent results across runs
- **Compatible with quantized KV cache**: The new preprocessing kernel
design supports future quantization work
### Testing
- All existing GQA unit tests pass
- Verified Qwen3 model no longer produces gibberish output
- Tested both fp16/bf16 and various head configurations