Refactor schema extraction and output unflattening (#16894)
### Motivation and Context
When we handle PyTorch models' inputs in different places (ORTModule or
others), it's common for us to flatten a structured data into a 1-D
tensor list (required by lib for example torch.onnx.export,
torch.autograd.Function.forward or ORT inference session), then do
subsequent work, then unflatten back to original hierarchy as returned
values.
DeepStage3 hooks support work also need such a lib to do similar things,
so I was proposing to extract this pair of APIs in training/utils/,
which can be more used more generally. Also a comprehensive set of test
data are used for testing unflatten/flatten in unit tests.
Let me know if you have any other suggestions.
### Refactor schema extraction and output unflattening
Move `_extract_schema` and `unflatten_user_output` in
`orttraining/orttraining/python/training/ortmodule/_io.py` . to
`extract_data_and_schema` and `unflatten_data_using_schema` in
`orttraining/orttraining/python/training/utils/torch_io_helper.py` as
shared libs, which can be used later by other features (deepspeed stage
3 hook rewrite).
While there are still a few duplicated logic handling flatten with
different task by recursively loop the data struct, will change them
step by step in case of heavy review efforts.