benchmark
64268fac - Disable moco on CPU (#838)

Commit
3 years ago
Disable moco on CPU (#838) Summary: When I run this model I get: ``` $ ./torchbench.py --nothing -k moco Traceback (most recent call last): File "./torchbench.py", line 1021, in <module> main() File "./torchbench.py", line 912, in main for device, name, model, example_inputs in iter_models(args): File "./torchbench.py", line 112, in iter_models yield load_model(device, model_name, args.training, args.check_accuracy) File "./torchbench.py", line 140, in load_model benchmark = benchmark_cls(test="eval", device=device, jit=False) File "/home/jansel/torchbenchmark/torchbenchmark/util/model.py", line 14, in __call__ obj = type.__call__(cls, *args, **kwargs) File "/home/jansel/torchbenchmark/torchbenchmark/models/moco/__init__.py", line 65, in __init__ self.model = torch.nn.parallel.DistributedDataParallel( File "/home/jansel/pytorch/torch/nn/parallel/distributed.py", line 574, in __init__ self._log_and_throw( File "/home/jansel/pytorch/torch/nn/parallel/distributed.py", line 676, in _log_and_throw raise err_type(err_msg) ValueError: DistributedDataParallel device_ids and output_device arguments only work with single-device/multiple-device GPU modules or CPU modules, but got device_ids [0], output_device None, and module parameters {device(type='cpu')}. ``` If I comment out the DistributedDataParallel line, I get: ``` Traceback (most recent call last): File "./torchbench.py", line 1021, in <module> main() File "./torchbench.py", line 915, in main run_one_model( File "./torchbench.py", line 971, in run_one_model correct_result = model_iter_fn(copy.deepcopy(model), example_inputs) File "./torchbench.py", line 471, in forward_pass return mod(*inputs) File "/home/jansel/pytorch/torch/nn/modules/module.py", line 1111, in _call_impl return forward_call(*input, **kwargs) File "/home/jansel/torchbenchmark/torchbenchmark/models/moco/moco/builder.py", line 133, in forward im_k, idx_unshuffle = self._batch_shuffle_ddp(im_k) File "/home/jansel/pytorch/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/home/jansel/torchbenchmark/torchbenchmark/models/moco/moco/builder.py", line 76, in _batch_shuffle_ddp x_gather = concat_all_gather(x) File "/home/jansel/pytorch/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/home/jansel/torchbenchmark/torchbenchmark/models/moco/moco/builder.py", line 172, in concat_all_gather torch.distributed.all_gather(tensors_gather, tensor, async_op=False) File "/home/jansel/pytorch/torch/distributed/distributed_c10d.py", line 2062, in all_gather work = default_pg.allgather([tensor_list], [tensor]) ``` It seems like this are not configured properly Pull Request resolved: https://github.com/pytorch/benchmark/pull/838 Reviewed By: xuzhao9 Differential Revision: D35272714 Pulled By: jansel fbshipit-source-id: e543f42662ad5b9c413d7d04a7a627201104b75c
Author
Parents
Loading