pytorch
4442fa59 - Avoid keeping old histograms in the histogram observer to fix the OOM issue (#29768)

Commit
5 years ago
Avoid keeping old histograms in the histogram observer to fix the OOM issue (#29768) Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/29768 The previous histogram observer saves all histograms for new data and merge the histograms in the end. It could cause OOM issue when we want to collect histograms on large amount of data. In this diff, we assume running the histogram observer with a single thread and remap the histogram after seeing new data. Test Plan: ``` buck test mode/opt caffe2/caffe2/quantization/server:dynamic_histogram_test ``` ``` buck run mode/opt caffe2/caffe2/fb/fbgemm/numerical_debugger/workflows:int8_static_quantization_exporter -- --model-dir /mnt/public/summerdeng/ads/ --model-name downsized_ins_97293388_0.predictor --run --iter 10 --dataset-path /mnt/public/summerdeng/ads/ctr_instagram_story_int8/dataset/train/dataset_115764229_10 --hive-path="hive://ad_delivery/ig_ad_prefiltered_training_data_orc_injected/ds=2019-09-09/pipeline=ctr_instagram_story_click_only_model_opt_out_df" --collect-histogram --activation-histogram-file=/mnt/public/summerdeng/ads/ctr_instagram_story_int8/activation_histograms/dummy_debug_OOM.txt ``` Reviewed By: jspark1105 Differential Revision: D18458764 fbshipit-source-id: c0e36fffe9bf021efd17d8494deef43727333da2
Author
Parents
Loading