pytorch
4fc525e7 - [Dper3] Implementation of squeezed input to DC++

Commit
4 years ago
[Dper3] Implementation of squeezed input to DC++ Summary: This Diff provides an option for DC++ module to use the squeezed sparse feature embeddings to generate attention weights, with the purpose of reducing the network size to achieve QPS gains. There are 3 squeeze options: sum, max, and mean, along the embedding dimension and are provided for both the attention weights and resnet generation. Example workflow: f208474456 {F257199459} Test Plan: 1. Test single ops buck test dper3/dper3/modules/low_level_modules/tests:single_operators_test -- test_reduce_back_mean buck test dper3/dper3/modules/low_level_modules/tests:single_operators_test -- test_reduce_back_max 2. Test DC++ module buck test dper3/dper3/modules/tests:core_modules_test -- test_dc_pp_arch_one_layer_compressed_embeddings_only_squeeze_input buck test dper3/dper3/modules/tests:core_modules_test -- test_dc_pp_arch_shared_input_squeeze_input buck test dper3/dper3/modules/tests:core_modules_test -- test_dc_pp_input_compress_embeddings_squeeze_input 3. Test Arch buck test dper3/dper3_models/ads_ranking/model_impl/sparse_nn/tests:sparse_nn_lib_test -- test_dense_sparse_interaction_compress_dot_arch_dot_compress_pp_squeezed_input 4. e2e test buck test dper3/dper3_models/ads_ranking/tests:model_paradigm_e2e_tests -- test_sparse_nn_compress_dot_attention_fm_max_fc_size_squeeze_input Reviewed By: taiqing Differential Revision: D22825069 fbshipit-source-id: 29269ea22cb47d487a1c92a1f6daae1055f54cfc
Author
Jing Ma
Parents
Loading