[OpBenchMobile] Enable operator_benchmark to run the benchmark on mobile through AiBench (#47767)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47767
This diff implements the functionality of running benchmark on mobile on top of operator_benchmark framework. It does so through a few steps:
1. create a scripted module from existing benchmark case.
2. run mobile specific optimization pass on the scripted module
3. run the scripted module on AiBench by calling its Python API
A small change in the way of writing a benchmark case is introduced so that both local and mobile run can share the same interface. The change is about having inputs as arguments of the `forward` function, so that mobile optimization pass can be run successfully (otherwise everything will be optimized away by constant propagation).
Test Plan:
## local op_bench run
buck run caffe2/benchmarks/operator_benchmark:benchmark_all_test -- --iterations 1 --warmup_iterations 1
buck run caffe2/benchmarks/operator_benchmark:benchmark_all_test -- --iterations 1 --warmup_iterations 1 --use_jit
Exceptions: `py_module` op in `FakeQuantizePerTensorBaseOpBenchmark` and `FakeQuantizePerChannelBaseOpBenchmark` under JIT mode. These tests also failed in the base version
```
RuntimeError:
Module 'FakeQuantizePerChannelOpBenchmark' has no attribute 'op_func' (This function exists as an attribute on the Python module, but we failed to compile it to a TorchScript function.
The error stack is reproduced here:
Python builtin <built-in method apply of FunctionMeta object at 0x619000c652a0> is currently not supported in Torchscript:
File "/data/users/wangyang19/fbsource/fbcode/buck-out/dev/gen/caffe2/benchmarks/operator_benchmark/pt/quantization_test#link-tree/quantization_test.py", line 260
quant_min: int, quant_max: int
):
return _LearnableFakeQuantizePerChannelOp.apply(input, scale, zero_point, axis, quant_min, quant_max, 1.0)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
:
File "/data/users/wangyang19/fbsource/fbcode/buck-out/dev/gen/caffe2/benchmarks/operator_benchmark/pt/quantization_test#link-tree/quantization_test.py", line 313
axis: int, quant_min: int, quant_max: int
):
return self.op_func(input, scale, zero_point, axis, quant_min, quant_max)
~~~~~~~~~~~~ <--- HERE
```
`_consume_op` typing mismatch: chunk, split, qobserver, sort in qunary. These will be fixed in D24774105
## OSS test
python3 -m benchmark_all_test --iterations 1 --warmup_iterations 1 --use_jit
python3 -m benchmark_all_test --iterations 1 --warmup_iterations 1
## saved module graph
```
module __torch__.mobile_benchmark_utils.OpBenchmarkMobile {
parameters {
}
attributes {
training = True
num_iters = 1
benchmark = <__torch__.pt.add_test.___torch_mangle_4.AddBenchmark object at 0x6070001b8b50>
}
methods {
method forward {
graph(%self : __torch__.mobile_benchmark_utils.OpBenchmarkMobile):
%12 : None = prim::Constant() # /data/users/wangyang19/fbsource/fbcode/buck-out/dev/gen/caffe2/benchmarks/operator_benchmark/fb/pt/mobile/benchmark_all_test_fbcode#link-tree/mobile_benchmark_utils.py:9:4
%4 : bool = prim::Constant[value=1]() # /data/users/wangyang19/fbsource/fbcode/buck-out/dev/gen/caffe2/benchmarks/operator_benchmark/fb/pt/mobile/benchmark_all_test_fbcode#link-tree/mobile_benchmark_utils.py:10:8
%1 : int = prim::GetAttr[name="num_iters"](%self)
= prim::Loop(%1, %4) # /data/users/wangyang19/fbsource/fbcode/buck-out/dev/gen/caffe2/benchmarks/operator_benchmark/fb/pt/mobile/benchmark_all_test_fbcode#link-tree/mobile_benchmark_utils.py:10:8
block0(%i : int):
%6 : __torch__.pt.add_test.___torch_mangle_4.AddBenchmark = prim::GetAttr[name="benchmark"](%self)
%7 : __torch__.pt.add_test.___torch_mangle_4.AddBenchmark = prim::GetAttr[name="benchmark"](%self)
%self.inputs_tuple : (Float(1, 1, 1, strides=[1, 1, 1], requires_grad=0, device=cpu), Float(1, 1, 1, strides=[1, 1, 1], requires_grad=0, device=cpu)) = prim::Constant[value=({0.48884}, {0.809042})]()
%9 : Tensor, %10 : Tensor = prim::TupleUnpack(%self.inputs_tuple)
%23 : int = prim::Constant[value=1]()
%24 : Tensor = aten::add(%9, %10, %23) # /data/users/wangyang19/fbsource/fbcode/buck-out/dev/gen/caffe2/benchmarks/operator_benchmark/fb/pt/mobile/benchmark_all_test_fbcode#link-tree/pt/add_test.py:39:15
-> (%4)
return (%12)
}
}
submodules {
module __torch__.pt.add_test.___torch_mangle_4.AddBenchmark {
parameters {
}
attributes {
mobile_optimized = True
}
methods {
method forward {
graph(%self : __torch__.pt.add_test.___torch_mangle_4.AddBenchmark,
%input_one.1 : Tensor,
%input_two.1 : Tensor):
%3 : int = prim::Constant[value=1]()
%4 : Tensor = aten::add(%input_one.1, %input_two.1, %3) # /data/users/wangyang19/fbsource/fbcode/buck-out/dev/gen/caffe2/benchmarks/operator_benchmark/fb/pt/mobile/benchmark_all_test_fbcode#link-tree/pt/add_test.py:39:15
return (%4)
}
method get_inputs {
graph(%self : __torch__.pt.add_test.___torch_mangle_4.AddBenchmark):
%self.inputs_tuple : (Float(1, 1, 1, strides=[1, 1, 1], requires_grad=0, device=cpu), Float(1, 1, 1, strides=[1, 1, 1], requires_grad=0, device=cpu)) = prim::Constant[value=({0.48884}, {0.809042})]()
return (%self.inputs_tuple)
}
}
submodules {
}
}
}
}
```
Reviewed By: kimishpatel
Differential Revision: D24322214
fbshipit-source-id: 335317eca4f40c4083883eb41dc47caf25cbdfd1