pytorch
989b2485 - Add ONEDNN quantization backend (#69820)

Commit
2 years ago
Add ONEDNN quantization backend (#69820) Summary: This PR adds a new quantization backend, ONEDNN, with quantized conv and linear kernels in the same code path as the FBGEMM backend The ONEDNN backend is an alternative of FBGEMM and QNNPACK backends. It takes advantage of features of the latest Intel® CPU products. It supports VNNI on Cascade Lake and the AMX instruction set to be available on Sapphire Rapids which has 8X int8 peak TOPS over VNNI. ONEDNN demonstrates better performance on conv kernels of popular CNN models than FBGEMM. It also supports more fused ops, such as convolution-add-ReLU, than FBGEMM and QNNPACK. To use this backend, users only need to set the quantization backend to 'onednn' before any calculation without a single change to models. ```python torch.backends.quantized.engine = 'onednn' ``` ## Design docs https://github.com/pytorch/pytorch/issues/21120#issuecomment-562371983 https://github.com/pytorch/pytorch/pull/67177#issuecomment-963787096 ## File changes **Add ONEDNN to qengine list** - aten/src/ATen/Context.cpp - c10/core/QEngine.h - torch/ao/quantization/qconfig.py - torch/backends/quantized/\_\_init\_\_.py **Implement qconv & qlinear for ONEDNN backend** - aten/src/ATen/native/quantized/cpu/conv_serialization.h - aten/src/ATen/native/quantized/cpu/fbgemm_utils.cpp - aten/src/ATen/native/quantized/cpu/onednn_utils.h - aten/src/ATen/native/quantized/cpu/qconv.cpp - aten/src/ATen/native/quantized/cpu/qconv_dynamic.cpp - aten/src/ATen/native/quantized/cpu/qconv_prepack.cpp - aten/src/ATen/native/quantized/cpu/qconv_unpack.cpp - aten/src/ATen/native/quantized/cpu/qlinear.cpp - aten/src/ATen/native/quantized/cpu/qlinear_dynamic.cpp - aten/src/ATen/native/quantized/cpu/qlinear_prepack.cpp - aten/src/ATen/native/quantized/cpu/qlinear_unpack.cpp **Skip tests that are not supported by ONEDNN** - test/ao/sparsity/test_kernels.py - test/quantization/core/test_quantized_module.py - test/quantization/core/test_quantized_op.py ## Validation results This PR has passed `test_quantization.py` and `test_mkldnn.py`. Below are performance data of int8 2d convolution and linear on the Cascade Lake Xeon® platform: (Note: Tested with single instance on single core. Using the latest oneDNN library.) **Table 1. Performance comparison of int8 2d convolution operator** |No.| Shape| FBGEMM| ONEDNN| Gain| |-|-|-|-|-| |1| IC=128, OC=128, kernel=3, stride=1, N=4, H=32, W=32, G=1, pad=0| 668.310us| 535.630us| 24.8%| |2| IC=128, OC=128, kernel=3, stride=2, N=4, H=32, W=32, G=1, pad=0| 290.630us| 281.810us| 3.1%| |3| IC=128, OC=256, kernel=3, stride=1, N=4, H=32, W=32, G=1, pad=0| 1.045ms| 893.010us| 17.0%| |4| IC=128, OC=256, kernel=3, stride=2, N=4, H=32, W=32, G=1, pad=0| 385.320us| 373.720us| 3.1%| |5| IC=256, OC=256, kernel=3, stride=1, N=4, H=32, W=32, G=1, pad=0| 1.876ms| 1.641ms| 14.3%| |6| IC=256, OC=256, kernel=3, stride=2, N=4, H=32, W=32, G=1, pad=0| 660.460us| 638.470us| 3.4%| **Table 2. Performance comparison of int8 linear operator** |No.| Shape (m, n, k)| FBGEMM| ONEDNN| Gap| |-|-|-|-|-| |1| 64, 800, 320| 80.550us| 96.770us| 20.10%| |2| 64, 768, 512| 101.230us| 130.720us| 29.10%| |3| 16, 256, 512| 30.230us| 51.450us| 70.20%| |4| 128, 128, 128| 33.810us| 50.480us| 49.30%| |5| 256, 512, 256| 154.490us| 195.050us| 26.30%| |6| 1024, 1024, 1024| 3.134ms| 3.514ms| 12.10%| ONEDNN showed advantages over FBGEMM for convolution. However, it has performance gap to FBGEMM for Linear ops. The gap is a known issue and further optimization is in progress in the oneDNN library. On the latest platforms, better performance of ONEDNN is achieved for both conv and linear. Pull Request resolved: https://github.com/pytorch/pytorch/pull/69820 Reviewed By: HDCharles Differential Revision: D33716039 Pulled By: jerryzh168 fbshipit-source-id: 6f7bb807e85798142dfcffccfca8b8bd652fb3dd (cherry picked from commit 91526b373560f42ba0ad307f9cccfc0eb5218b1f)
Author
Committer
Parents
Loading