pytorch
9cf6be6b - Fix torch.nn.functional.interpolate microbenchmark for non-4D inputs

Commit
3 years ago
Fix torch.nn.functional.interpolate microbenchmark for non-4D inputs Summary: This diff fixes the `interpolate` microbenchmark for non-4D inputs, which are not supported by the `bilinear` mode Test Plan: 5D and 3D: ``` # Benchmarking PyTorch: interpolate # Mode: Eager # Name: interpolate_input_size(1,3,16,320,320)_output_size(8,256,256) # Input: input_size: (1, 3, 16, 320, 320), output_size: (8, 256, 256) Forward Execution Time (us) : 221008.660 # Benchmarking PyTorch: interpolate # Mode: Eager # Name: interpolate_input_size(4,512,320)_output_size(256,) # Input: input_size: (4, 512, 320), output_size: (256,) Forward Execution Time (us) : 9727.900 ``` 4D ``` # Benchmarking PyTorch: interpolate # Mode: Eager # Name: interpolate_input_size(1,3,60,40)_output_size(24,24)_channels_lastTrue # Input: input_size: (1, 3, 60, 40), output_size: (24, 24), channels_last: True Forward Execution Time (us) : 375.181 ``` Reviewed By: fmassa Differential Revision: D26486678 fbshipit-source-id: 5d476afba3f35da9f8b86db16e21505bdb00888b
Author
Parents
Loading