pytorch
df7d01ae - perf(inductor): use for loop with shortcut in `Optimizer`s to speedup against list comprehensions (e.g. complex conversion) (#110613)

Commit
1 year ago
perf(inductor): use for loop with shortcut in `Optimizer`s to speedup against list comprehensions (e.g. complex conversion) (#110613) Fully fixes: https://github.com/pytorch/pytorch/issues/110506 Depends: https://github.com/pytorch/pytorch/pull/110607 Potential merge conflicts: - https://github.com/pytorch/pytorch/pull/110339 - https://github.com/pytorch/pytorch/pull/110345 - https://github.com/pytorch/pytorch/pull/110454 Related: - https://github.com/pytorch/pytorch/issues/110606 (we can apply the improvements here orthogonally to the complex support) ### Results Benchmark: 100 params. Breakdowns (float32, dynamo): ``` Adagrad: this PR: 4.4s, main: 8.8s Adam: this PR: 2.1s, main: 9.8s AdamW: this PR: 2.5s, main: 8.2s ASGD: this PR: 3.1s, main: 8.5s RMSProp: this PR: 1.3s, main: 4.2s RProp: this PR: 6.7s, main: 14.9s ``` Notes: 1. Adagrad is still slow due to `_get_value` list comprehension. Can be fixed in https://github.com/pytorch/pytorch/pull/110339/files by utilizing capturable path 2. Adamax is not actually compiled (it is currently disabled). 3. Inductor compile time is quite variable. We calculate dynamo by subtracting `call_user_compiler` from `compile_inner` timing. <details> This PR: ``` Adagrad (torch.float32): 28.47496461868286s Adagrad (torch.complex64): 29.379547357559204s Adam (torch.float32): 17.334211587905884s Adam (torch.complex64): 29.637500524520874s Adamax (torch.float32): 2.4749321937561035s Adamax (torch.complex64): 3.1997995376586914s AdamW (torch.float32): 18.06532859802246s AdamW (torch.complex64): 28.25661015510559s ASGD (torch.float32): 23.70255398750305s ASGD (torch.complex64): 25.33756995201111s RMSprop (torch.float32): 7.964028596878052s RMSprop (torch.complex64): 12.909599781036377s Rprop (torch.float32): 30.512362003326416s Rprop (torch.complex64): 44.74405765533447s ``` Main ``` Adagrad (torch.float32): 26.919506072998047s Adagrad (torch.complex64): 35.190622091293335s Adam (torch.float32): 25.715000867843628s Adam (torch.complex64): 24.17716670036316s Adamax (torch.float32): 2.4404726028442383s Adamax (torch.complex64): 3.3538928031921387s AdamW (torch.float32): 25.2022807598114s AdamW (torch.complex64): 28.915700912475586s ASGD (torch.float32): 24.108731985092163s ASGD (torch.complex64): 26.589075088500977s RMSprop (torch.float32): 10.781344175338745s RMSprop (torch.complex64): 15.136352777481079s Rprop (torch.float32): 42.46482181549072s Rprop (torch.complex64): 48.28277635574341s ``` Seems that it doesn't help the complex case by much (but that's not the majority case). torch.float32 is generally positive, when it does not show drastic improvement / regresses, it is due to inductor variance (by manually inspecting the logs). </details> ### Benchmark Script ```python import torch import time from torch.optim import Adagrad, Adam, Adamax, AdamW, ASGD, RMSprop, Rprop OPTIMS = [Adagrad, Adam, Adamax, AdamW, ASGD, RMSprop, Rprop] DTYPES = [torch.float, torch.cfloat] NUM_PARAMS = 100 kwargs = { "lr": 0.01, "foreach": True } summary = [] for optim_cls in OPTIMS: for dtype in DTYPES: torch._dynamo.reset() # torch._inductor.metrics.reset() input = torch.ones([10, 10], dtype=dtype, device="cuda:0") model = torch.nn.Sequential( *[torch.nn.Linear(10, 10, dtype=dtype, device="cuda:0") for _ in range(NUM_PARAMS)] ) model(input).sum().abs().backward() opt_compiled = optim_cls(model.parameters(), **kwargs) compiled_step = torch.compile(opt_compiled.step) with torch.set_grad_enabled(False): start_time = time.time() compiled_step() summary.append(f"{optim_cls.__name__} ({dtype}): {time.time() - start_time}s") print(optim_cls, kwargs, dtype, torch._dynamo.utils.compile_times()) for s in summary: print(s) ``` CC: @janeyx99 @mlazos Pull Request resolved: https://github.com/pytorch/pytorch/pull/110613 Approved by: https://github.com/janeyx99
Author
Committer
Parents
Loading